# The Bilirubin Binding Panel: A Henderson-Hasselbalch Approach to Neonatal Hyperbilirubinemia

Charles E. Ahlfors, MD

Poor plasma bilirubin binding increases the risk of bilirubin neurotoxicity in newborns with hyperbilirubinemia. New laboratory tests may soon make it possible to obtain a complete bilirubin binding panel when evaluating these babies. The 3 measured components of the panel are the plasma total bilirubin concentration (B<sub>Total</sub>), which is currently used to guide clinical care; the bilirubin binding capacity (BBC); and the concentration of non-albumin bound or free bilirubin (B<sub>Free</sub>). The fourth component is the bilirubin-albumin equilibrium dissociation constant, K<sub>D</sub>, which is calculated from B<sub>Total</sub>, BBC, and B<sub>Free</sub>. The bilirubin binding panel is comparable to the panel of components used in the Henderson-Hasselbalch approach to acidbase assessment. Bilirubin binding population parameters (not prospective studies to determine whether the new bilirubin binding panel components are better predictors of bilirubin neurotoxicity than B<sub>Total</sub>) are needed to expedite the clinical use of bilirubin binding. At any  $\rm B_{Total}$  , the  $\rm B_{Free}$  and the relative risk of bilirubin neurotoxicity increase as the K<sub>D</sub>/BBC ratio increases (ie, bilirubin binding worsens). Comparing the K<sub>D</sub>/BBC ratio of newborns with B<sub>Total</sub> of concern with that typical for the population helps determine whether the risk of bilirubin neurotoxicity varies significantly from the inherent risk at that B<sub>Total</sub>. Furthermore, the bilirubin binding panel individualizes care because it helps to determine how aggressive intervention should be at any  $\mathrm{B}_{\mathrm{Total}}$  , irrespective of whether it is above or below established B<sub>Total</sub> guidelines. The bilirubin binding panel may reduce anxiety, costs, unnecessary treatment, and the likelihood of undetected bilirubin neurotoxicity.

On the clinical horizon and the impetus for this review is the opportunity to measure plasma bilirubin binding routinely in the clinical management of neonatal hyperbilirubinemia. Although it was demonstrated more than half a century ago that poor bilirubin binding by plasma albumin significantly increases the risk of bilirubin neurotoxicity (kernicterus) in jaundiced newborns,<sup>1-3</sup> methods for the routine clinical laboratory or point-of-care measurement of bilirubin binding have been elusive until recently.<sup>4–6</sup> The purpose of the of this review is to introduce and review these tests after presenting the strong case for their expeditious incorporation into clinical care.<sup>7</sup> Bilirubin binding promises substantial medical, emotional, and financial benefits for jaundiced newborns, their families, and the health care system.<sup>8–10</sup>

The "new" issues in this review are (1) the emerging technologies and (2) laying to rest the long held, well-intentioned but unfortunately

# abstract

Consulting Professor, Stanford University School of Medicine, Stanford, California

**DOI:** 10.1542/peds.2015-4378

Address correspondence to Charles E. Ahlfors, MD, 14019 SE 159th Place, Renton, WA 98058. E-mail: ligand@centurytel.net

PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275).

Copyright © 2016 by the American Academy of Pediatrics

**FINANCIAL DISCLOSURE:** The authors have indicated they have no financial relationships relevant to this article to disclose.

FUNDING: No external funding.

**POTENTIAL CONFLICT OF INTEREST:** The authors have indicated they have no potential conflicts of interest to disclose.

**To cite:** Ahlfors CE. The Bilirubin Binding Panel: A Henderson-Hasselbalch Approach to Neonatal Hyperbilirubinemia. *Pediatrics.* 2016;138(4): e20154378

| Component                   | Description                                                  | Relevant Equation                                                                              | Comments                                                                              |
|-----------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| B <sub>Total</sub> (mg/dL)  | Albumin-bound +<br>Free Bilirubin<br>concentrations          | $\mathbf{B}_{\mathrm{Total}} \pm \mathbf{B}_{\mathrm{Free}} \cong \mathbf{B}_{\mathrm{Total}}$ | Clinical laboratory<br>test                                                           |
| $B_{Free}$ (µg/dL)          | Non—albumin<br>bound (free)<br>bilirubin<br>concentration    | $\frac{K_{\rm D} \cdot B_{\rm Total}}{({\rm BBC} - B_{\rm Total})}$                            | Peroxidase test <sup>18</sup><br>or fluorescent<br>probe test <sup>4</sup>            |
| BBC (mg/dL)                 | Concentration of<br>bilirubin binding<br>sites               | BBC=n·8.8·AI b <sub>Total</sub>                                                                | Peroxidase test <sup>18</sup><br>or front face<br>fluorescence<br>test <sup>5,6</sup> |
| K <sub>D</sub> (μg/dL)      | Bilirubin-albumin<br>equilibrium<br>dissociation<br>constant | $\frac{B_{Free} \cdot (BBC - B_{Total})}{B_{Total}}$                                           | Calculated                                                                            |
| Alb <sub>Total</sub> , g/dL | Plasma albumin concentration                                 | AI $b_{Total} = \frac{BBC}{n \cdot 8.8}$                                                       | Clinical laboratory<br>test                                                           |
| n                           | Bilirubin Binding<br>Sites per<br>Albumin<br>molecule        | $n = \frac{BBC}{8.8 \cdot AI b_{Total}}$                                                       | Calculated                                                                            |

The plasma albumin concentration (AlbTotal) is also included because it is related to the BBC as shown.

misguided notion that before bilirubin binding can be used clinically, prospective studies are required to prove that "the bilirubin binding test" predicts bilirubin neurotoxicity better than the conventional plasma total bilirubin concentration (B<sub>Total</sub>) currently guiding clinical care.<sup>11–15</sup> The second issue stems from the misconception that the "bilirubin binding tests" and B<sub>Total</sub> are somehow fundamentally different, which is not the case. The "bilirubin binding tests" are coming to aid, not compete with, their long-overworked and beleaguered colleague, B<sub>Total</sub>. The "prospective" data needed to use bilirubin binding clinically are the bilirubin binding parameters (normal bilirubin binding values) for the various populations of jaundiced newborns (eg, term, premature, etc).

Rigorous quantification of bilirubin binding requires 3 (not 1) plasma measurements just as 2 measurements, pH and  $P_aCO_2$ , are needed to rigorously quantify acid-base balance.<sup>16</sup> B<sub>Total</sub> is 1 of the measurements, and the other 2 are the bilirubin binding capacity (BBC) and the non–albumin bound or "free" bilirubin concentration (B<sub>Free</sub>). The BBC is the concentration of plasma bilirubin binding sites and is related to the albumin concentration (Alb<sub>Total</sub>) by the equation BBC  $(mg/dL) = n \cdot 8.8 \cdot Alb_{Total}$ , where  $Alb_{Total}$ is measured in grams/deciliter and *n* is the number of bilirubin binding sites per albumin molecule. It is often assumed that *n* = 1, but albumin molecules can bind more than one bilirubin molecule,16 and endogenous ligands or drugs may occupy some of the bilirubin binding sites in plasma samples, effectively reducing the BBC.<sup>1–3,5</sup> When  $B_{Total} \ge BBC$ , albumin is "saturated" with bilirubin and the risk of bilirubin neurotoxicity increases substantially.1-3,7,16

 $B_{Total}$ , BBC, and  $B_{Free}$  are used to calculate the fourth and final bilirubin binding component, the bilirubinalbumin equilibrium dissociation constant ( $K_D$ ).  $K_D$  measures how long a bilirubin binding site that has captured a bilirubin molecule can restrain the struggling molecule before it frees itself and escapes back into solution.  $K_D$  is akin to the Henderson-Hasselbalch dissociation constant ( $K_a$ ) that is used to quantify acid-base dissociation. However,  $K_D$ , unlike  $K_a$ , varies considerably in the newborn population.<sup>17</sup> Therefore, for each jaundiced newborn, both  $K_D$  and BBC must be determined to quantify the strength and number of plasma bilirubin binding sites, respectively.  $B_{Total}$ ,  $B_{Free}$ , BBC, and  $K_D$  constitute a bilirubin binding panel with the properties and characteristics outlined in Table 1.

It is important to note that the failure to use all 4 bilirubin binding components to quantify bilirubin binding has seriously undermined every study evaluating the role of "bilirubin binding" in the pathogenesis of bilirubin neurotoxicity. A recent example is the failure of the B<sub>Total</sub>/Alb<sub>Total</sub> ratio (ie B<sub>Total</sub>/BBC), billed as a "surrogate" bilirubin binding test, to predict bilirubin neurotoxicity better than B<sub>Total</sub>.<sup>19-21</sup> The studies use just 2 of the bilirubin binding components to test the misguided hypothesis that the B<sub>Total</sub>/Alb<sub>Total</sub> ratio will predict bilirubin neurotoxicity better than B<sub>Total</sub>.<sup>19–21</sup> Although the ratio is not better than B<sub>Total</sub> as a general intervention guideline, some current guidelines do recommend lowering the intervention  $B_{Total}$  when  $Alb_{Total}$ is low in an effort to make the B<sub>Total</sub> guidelines more consistent with respect to bilirubin binding.14

For most clinicians, the rub with bilirubin binding lies not in the concept that poor bilirubin binding increases the risk of bilirubin neurotoxicity but in the considerable confusion and angst as to whether measuring bilirubin binding can ever be a routine, practical, and helpful tool in the nursery.<sup>11,12,22,23</sup> The bad news is that a little algebra is required to show that the bilirubin binding panel can indeed become a routine, practical, and helpful tool in the clinical setting. The good news is that the calculations show beyond a doubt that the risk of bilirubin neurotoxicity at any  $\boldsymbol{B}_{\text{Total}}$  increases as the K<sub>D</sub>/BBC ratio increases, that is, as bilirubin binding worsens.

Clinically, bilirubin binding can provide a far better "feel" about the risk of bilirubin neurotoxicity, for example, in a term infant with a "hazardous" B<sub>Total</sub> of 35 mg/dL.<sup>24-27</sup> A better "feel" may seem too qualitative and vague for some, but keep in mind that the downside risk of a decision to treat a baby with a B<sub>Total</sub> of 35 mg/dL with phototherapy alone  $^{24-27}$ increases as K<sub>D</sub>/BBC increases. It is unrealistic to expect the bilirubin binding panel to predict bilirubin neurotoxicity with 100% certainty, but the panel will provide important additional information at the time difficult treatment decisions are made and when those decisions are reviewed retrospectively once the outcome is known.<sup>19,24–27</sup> This may ultimately lead to more robust treatment recommendations based on  $B_{Total}$ ,  $K_D$ /BBC ratios and clinical circumstances.14,15,24-27

K<sub>D</sub> is the esoteric and often baffling member of the bilirubin binding panel, especially for those unfamiliar with the chemistry concept of mass action and its related equations.<sup>16,17,28</sup> Fortunately the more clinically familiar Henderson-Hasselbalch mass action approach to acid-base balance provides a convenient model for understanding  $K_{D}$  and its relationship to the measured bilirubin binding components. Mass action refers to the reversible chemical equilibria shown below for bicarbonate-carbonic acid and bilirubin-albumin, where  $(BBC - B_{Total} + B_{Free})$  and  $(B_{Total} - B_{Free})$ are the concentrations of unoccupied bilirubin binding sites and albuminbound bilirubin, respectively.<sup>7,28</sup>

$$H^{+} + HCO_{3}^{-} \rightleftharpoons H_{2}CO_{3}$$

$$\overset{K_{a}}{\rightleftharpoons} CO_{2}(gas) + H_{2}O$$

$$B_{Free} + (BBC - B_{Total} + B_{Free})$$

$$\overset{K_{D}}{\nleftrightarrow} (B_{Total} - B_{Free})$$

Fortunately,  $B_{Free}$  is so small (µg/dL) compared with  $B_{Total}$  (mg/dL)

that  $B_{Total} \pm B_{Free} \cong B_{Total}$  and the bilirubin-albumin equilibrium can be simplified to:

 $K_D$   $B_{Free} + BBC - B_{Total} \rightleftharpoons B_{Total}$ The mass action equations derived from the equilibria follow, along with the familiar additional logarithmic derivation known as the Henderson-Hasselbalch equation. Equation 1 is used to calculate  $K_D$  from the measured bilirubin binding panel components.<sup>16,17,28</sup>

$$H^{+} = \frac{K_{a} \cdot H_{2} CO_{3}}{HCO_{3}^{-}}$$

$$= \frac{K_{a} \cdot 0.03 \cdot P_{a} CO_{2}}{HCO_{3}^{-}};$$

$$pH = p K_{a} + \log\left(\frac{HCO_{3}^{-}}{0.03 \cdot P_{a} CO_{2}}\right)$$

$$B_{Free} \cong \frac{K_{D} \cdot B_{Total}}{BBC - B_{Total}}; K_{D}$$

$$\cong \frac{B_{Free} \cdot (BBC - B_{Total})}{B_{Total}}$$

At any  $B_{Total}$ ,  $B_{Free}$  increases as  $K_D$  increases and/or BBC decreases, ie bilirubin binding worsens. Therefore, the  $K_D$ /BBC ratio is a continuous and robust indicator of the quality of plasma bilirubin binding, and, as noted earlier, all the measured variables ( $B_{Total}$ ,  $B_{Free}$ , and BBC) are required to obtain the  $K_D$ /BBC ratio.

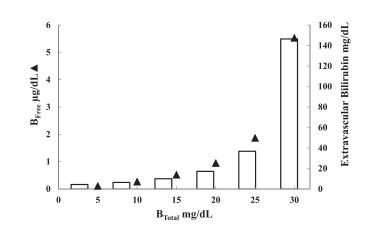
The Henderson-Hasselbalch approach to bilirubin binding exposes the incredible and unreasonable demands we have placed on B<sub>Total</sub> for >60 years due to our inability to measure BBC and B<sub>Free</sub>. Hsia et al<sup>29</sup> were the first to report that the incidence of kernicterus increased as B<sub>Total</sub> increased in newborns with untreated hemolysis. Since then, countless studies have been undertaken with little success to correlate "maximum" B<sub>Total</sub> with the risk of bilirubin neurotoxicity.9,25-27,30,31 In retrospect, trying to distinguish "normal" B<sub>Total</sub> (eg, "physiologic jaundice") with no risk of bilirubin

neurotoxicity from "abnormal" B<sub>Total</sub> (eg, "hyperbilirubinemia") with increased risk of bilirubin neurotoxicity is akin to having verified that the risk of acidosis is proportional to the  $P_2CO_2$  and then trying to assess the risk of acidosis using only the  $P_aCO_2$ . As important and appropos to bilirubin-albumin binding, the Henderson-Hasselbalch equation shows us that the clinical use of both pH and  $P_aCO_2$  to assess acid-base balance requires only the population parameters (normal values) for pH and P<sub>2</sub>CO<sub>2</sub>, not prospective proof that one predicts acidosis better than the other in a vain attempt to decide which of the 2 to use clinically.

Similarly, the clinical use of bilirubin binding to assess neonatal jaundice requires prospective determination of the bilirubin binding population parameters (normal values), not prospective studies of the relative abilities of the binding components to predict bilirubin neurotoxicity. If BBC and K<sub>D</sub> did not vary in the newborn population and their values were known, only B<sub>Total</sub> would be needed for a bilirubin binding panel (Equation 1) and to guide clinical care. Because this is not the case, bilirubin binding population parameters are required, as is the case for any new clinical laboratory test, to compare test results in an individual patient with the normal or typical values in the population at large.<sup>32,33</sup>

An example of bilirubin binding population parameters is provided in Table 2, which summarizes the statistical variation in the bilirubin binding panel components obtained from 117 jaundiced newborns  $\geq$  35 weeks' gestational age. B<sub>Total</sub> and B<sub>Free</sub> were measured as part of the routine evaluation for neonatal jaundice in a Clinical Laboratory Improvement Amendments–approved clinical laboratory using an older Food and Drug Administration–approved methodology that is currently used by clinical laboratories in Japan.<sup>34</sup> BBC

TABLE 2 Bilirubin Binding Panel Components in 127 Samples From 117 Newborns With Gestational Ages Ranging From 35 to 42 Weeks (mean 38 Weeks)


|                 | B <sub>Total</sub> mg/dL | B <sub>Free</sub> μg/dL | BBC mg/dL | K <sub>D</sub> μg/dL | K <sub>D</sub> /BBC μg/mg |
|-----------------|--------------------------|-------------------------|-----------|----------------------|---------------------------|
| Median          | 19.4                     | 1.01                    | 33.6      | 0.644                | 0.019                     |
| 25th percentile | 16.5                     | 0.60                    | 30.9      | 0.486                | 0.014                     |
| 75th percentile | 22.8                     | 1.55                    | 36.2      | 0.913                | 0.027                     |
| Range           | 6.8-36.0                 | 0.050-7.63              | 19.4-44.3 | 0.047-2.56           | 0.002-0.076               |

BBC was calculated from  $Alb_{Total}$  assuming n = 1 (see Table 1).

was calculated from Alb<sub>Total</sub> assuming n = 1 for illustrative purposes as BBC measurements per se were not available at the time. The considerable variation in both K<sub>D</sub> and BBC (ie, Alb<sub>Total</sub>) shown in Table 2 indicates that a bilirubin binding panel at a B<sub>Total</sub> of concern will add important additional information about the inherent risk of bilirubin neurotoxicity.

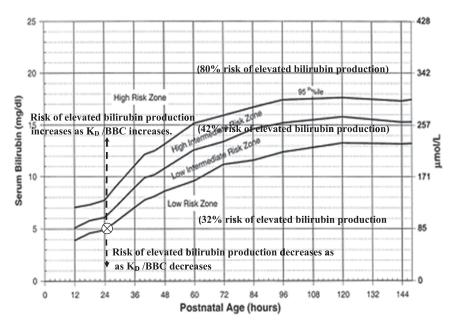
An overview of neonatal jaundice from the perspective of bilirubin binding focuses on how binding influences the distribution of the accumulating bilirubin between the blood (safe bilirubin) and the tissues, that is, brain (dangerous bilirubin).7,35-37 If all the accumulating bilirubin were retained in the blood, bilirubin neurotoxicity could not occur, irrespective of the magnitude of B<sub>Total</sub>. B<sub>Total</sub> measures the "safe" bilirubin retained in the blood and B<sub>Free</sub> determines how rapidly the "dangerous" bilirubin is accumulating extravascularly where it can potentially lead to bilirubin neurotoxicity.<sup>7,37</sup> B<sub>Free</sub> is often misconstrued as the "toxic" bilirubin level, but it is more correctly viewed as the force driving bilirubin into the extravascular compartments (eg, brain, skin, etc). Therefore, the total accumulated bilirubin at any time will be the sum of the increase in  $\boldsymbol{B}_{Total}\left(\Delta\boldsymbol{B}_{Total}\right)$  and the amount of bilirubin that has left the blood stream during that time. The latter can be quantified as  $k_e \cdot \Delta B_{Free}$  as shown in Equation 2, where  $k_e$  is the rate constant governing how rapidly B<sub>Free</sub> can leave the blood stream and  $\Delta B_{Free}$  is the increase in  $B_{Free}$ .

Total Accumulated Bilirubin = $\Delta B_{Total} + k_e \cdot \Delta B_{Free}$ 





The change in  $B_{Free}$  (**A**) and extravascular bilirubin (bars) as  $B_{Total}$  increases in 5-mg/dL increments.  $B_{Free}$  was calculated by using Equation 1 and the median  $K_D$  and BBC in Table 2. The extravascular bilirubin was calculated as  $40 \cdot \Delta B_{Free}$  where  $\Delta B_{Free}$  is the change in  $B_{Free}$  in each 5-mg/dL  $B_{Total}$  interval and assuming  $k_e = 40$  mg/µg (see Equation 2). Both  $B_{Free}$  and the extravascular bilirubin increase exponentially as  $B_{Total}$  increases linearly.


For example, if  $B_{Total}$  increases from 1 mg/dL to 5 mg/dL in 24 hours ( $\Delta B_{Total} = 4$  mg/dL) and 4 mg/dL has accumulated in the extravascular space during that time ( $k_e \cdot \Delta B_{Free} =$ 4 mg/dL), then the total accumulated bilirubin 8 mg/dL.<sup>35,36</sup> An important but underappreciated consequence of Equations 1 and 2 is that as  $B_{Total}$ increases linearly, both  $B_{Free}$  and the extravascular bilirubin increase exponentially as illustrated in Fig 1.<sup>7,16</sup>

In the current clinical setting where only  $B_{Total}$  is available, tools such as the Bhutani-Johnson hour-specific  $B_{Total}$  nomogram (Fig 2) are used to determine the likelihood that bilirubin accumulation and the risks of "hyperbilirubinemia" and bilirubin neurotoxicity are increased.<sup>38,39</sup> However, Equation 2 shows that the total bilirubin accumulation rate is also proportional to  $B_{Free'}$ which means that the bilirubin accumulation rate needed to achieve any hour-specific  $B_{Total}$  increases as  $B_{Free}$  increases. Because  $B_{Free}$  increases as the  $K_D/BBC$  ratio increases (Equation 1), the likelihood of an elevated bilirubin accumulation rate at any hour-specific  $B_{Total}$  will increase as the  $K_DBBC$  ratio increases, as illustrated by the vertical dashed lines in Fig 2 (see Appendix for more details).

A similar argument applies when B<sub>Total</sub> reaches or exceeds current B<sub>Total</sub> intervention guidelines.<sup>14,15</sup> However, in this case, the primary clinical concern is the inherent risk of bilirubin neurotoxicity rather than excessive bilirubin accumulation. In term newborns. for example, the risk of bilirubin neurotoxicity at "hazardous" B<sub>Total</sub> ≥30 mg/dL is probably somewhere between 10% and 50% depending on the clinical circumstances.<sup>19,25-27,29</sup> Equation 2 shows that the extravascular accumulation of bilirubin and therefore the inherent risk of bilirubin neurotoxicity at  $B_{Total} \ge 30 \text{ mg/dL}$  will increase as

 $K_D/BBC (B_{Free})$  increases. If the "average" or inherent risk of bilirubin neurotoxicity occurs at the median  $K_{\rm p}/BBC$  ratio for the population (Table 2), the K<sub>D</sub>/BBC ratio of a newborn with a  $B_{Total} \ge 30 \text{ mg/dL}$ can be compared with the median  $K_{\rm p}$ /BBC to determine whether the risk of bilirubin neurotoxicity (ie, the accumulated bilirubin needed to achieve that B<sub>Total</sub>) is significantly different from the "average" risk in the population at large. In addition, the actual  $B_{Total}$  at which the "average" risk of bilirubin neurotoxicity would occur in a newborn can be calculated by using Equation 1, individualizing B<sub>Total</sub> intervention guidelines and helping to identify those few newborns that may be at increased risk for bilirubin neurotoxicity at B<sub>Total</sub> below current intervention guidelines<sup>25-27</sup> (see Appendix for more details).

Bilirubin binding population parameters will vary depending on the newborn population under consideration. For example, the population of jaundiced premature newborns has an inherent increased risk of bilirubin neurotoxicity, increased bilirubin production when ventilated, and (perhaps) more complications from phototherapy than term newborns.<sup>40-42</sup> Table 3 provides an example of bilirubin binding population data for 48 premature newborns weighing  $\leq 1$ kg at birth. This population clearly does not bind bilirubin as well as term newborns,43 and exchange transfusion in this group has been recommended at B<sub>Total</sub> anywhere from 10 to 14 mg/dL.<sup>15,44</sup> As with term newborns, bilirubin binding



#### FIGURE 2

A 24-hour  $B_{Total}$  of 5 mg/dL plotted on the Bhutani-Johnson nomogram.  $^{38}$  The risks of an elevated bilirubin production rate at  $B_{Total}$  in the low, intermediate, or high zone are 32%, 42%, and 80%, respectively.  $^{39}$  The  $B_{Total}$  of 5 mg/dL falls between the low and intermediate risk zones, but bilirubin binding (K\_{\rm D}/BBC) further alters the risk as indicated by the dashed arrows (see Appendix for more details).

population parameters can be used to establish "standard" risks of bilirubin neurotoxicity and to individualize intervention B<sub>Total</sub><sup>45,46</sup> (see Appendix for more details).

The bilirubin binding panel creates an analog expansion of the current "one size fits all" B<sub>Total</sub> guidelines that are arbitrarily digitalized according to clinical status, birth weight, or gestational age.<sup>14,15</sup> It also increases the vascular bilirubin variables available for studies attempting to link adverse outcomes with "brain bilirubin exposure."<sup>25–27,47</sup> As with any clinical laboratory test, the bilirubin binding panel must be interpreted in the context of the clinical circumstances. Poor bilirubin binding will have little clinical impact if bilirubin accumulation is minimal,<sup>2</sup> and excellent bilirubin binding may not prevent kernicterus when excessive bilirubin accumulation is present.<sup>29</sup>

Although several methods for measuring the various bilirubin binding components have been published over the years,18,48-56 bilirubin binding has never been packaged as a panel, as outlined in this review. The most widely used "bilirubin binding test" is the peroxidase test for measuring  $\mathbf{B}_{\mathrm{Total}}$  and  $\mathbf{B}_{\mathrm{Free}}$  as first described by Jacobsen and Wennberg in 1974.53 A BBC can also be obtained using this test if B<sub>Free</sub> is measured at 2 B<sub>Total</sub>, which provides 2 equations that can be solved for the 2 unknowns  $K_D$  and BBC (Equation 1).43,53

**TABLE 3** Bilirubin Binding Panel Components in 64 Samples From 48 Premature Newborns Weighing  $\leq 1$  kg at Birth and With Gestational Ages Ranging From 23 to 31 Weeks (Mean 26 Weeks)

|                 | B <sub>Total</sub> mg/dL | B <sub>Free</sub> μg/dL | BBC mg/dL | K <sub>D</sub> μg/dL | K <sub>D</sub> /BBC μg/mg |
|-----------------|--------------------------|-------------------------|-----------|----------------------|---------------------------|
| Median          | 6.0                      | 0.36                    | 24.7      | 1.09                 | 0.050                     |
| 25th percentile | 4.4                      | 0.22                    | 22.7      | 0.695                | 0.030                     |
| 75th percentile | 7.5                      | 0.62                    | 28.5      | 1.70                 | 0.069                     |
| Range           | 2.8-15.2                 | 0.05-2.46               | 12.4-34.5 | 0.338-4.92           | 0.012-0.169               |

BBC was calculated from  $Alb_{Total}$  assuming n = 1 (see Table 1).

The peroxidase test, with a few modifications, has been used for many clinical and laboratory research studies.<sup>13,16.17,45,46,57-68</sup> It has also been used for many years in the routine clinical management of newborn jaundice in Japan, with good results.<sup>45,59,66,67</sup> Several studies using this test show that the magnitude of B<sub>Free</sub> (ie, poor bilirubin binding) is indeed more closely associated with or predictive of bilirubin neurotoxicity than the magnitude of B<sub>Total</sub>.<sup>13,46,58,60-63,69</sup> These studies support the principle that the accumulated bilirubin and risk of bilirubin neurotoxicity at a given  $\boldsymbol{B}_{\text{Total}}$  increase as bilirubin binding worsens (Equation 2) but as discussed earlier, are not evidence that  $B_{Free}$  rather than  $B_{Total}$  should guide jaundice management.<sup>22</sup> The test has not been automated for routine clinical laboratory use in the United States and is not well suited for point-of-care testing.

Two emerging tests that measure  $BBC^{5,6}$  and  $B_{Free}$  4 overcome the practical limitations of the peroxidase test. Although these newer tests are well suited for point-of-care use, both will require additional clinical tests to obtain a bilirubin binding panel. The BBC test is based on the ability of bilirubin to quench (reduce) albumin fluorescence as it binds.<sup>5,6</sup> The fluorescence before and after adding an excess of bilirubin is used to obtain B<sub>Total</sub> and the BBC, respectively.  $\mathbf{B}_{\text{Free}}$  must be measured by another method, but the BBC alone can be helpful. For example, the concern about a 24 hour-specific B<sub>Total</sub> of 5 mg/dL (Fig 2) may be greater if the if BBC is 25 versus 34 mg/dL. The test measures BBC in seconds using a drop of whole blood for which the HCT has been determined. This makes it ideal for point-of-care use in either intensive care or well-infant nurseries. Although the BBC is less likely to be affected by pH and temperature as compared with B<sub>Free</sub>,<sup>34,64</sup> the

effects of these factors have not been assessed. There has been relatively little clinical experience or research with the original version of this test,<sup>5</sup> and the variation between the BBC and Alb<sub>Total</sub> has not been established. Studies are also needed to determine how test performs when ligands such as sulfisoxazole or benzoate that also bind at bilirubin binding sites are present.<sup>46,58</sup>

The newly described B<sub>Free</sub> test uses a probe whose fluorescence is quenched when it binds bilirubin.<sup>4</sup> In plasma, only  $B_{Free}$  binds with the probe and can therefore be quantified from the change in probe fluorescence. B<sub>Free</sub> measured by this method compares favorably with B<sub>Free</sub> determined by the peroxidase test,<sup>4</sup> and the test has been used in 1 clinical study.<sup>69</sup> Both B<sub>Total</sub> and the BBC are still needed to complete the bilirubin binding panel, and studies are also needed to determine how B<sub>Free</sub> is affected by the presence of other ligands.<sup>46,58</sup> Ideally, both of the new tests and a standard clinical laboratory or transcutaneous B<sub>Total</sub> would be readily available for the assessment of a jaundiced newborn.

The bilirubin binding panel provides the long missing companions of B<sub>Total</sub> that are needed to maximize the information available from vascular bilirubin metrics when evaluating neonatal hyperbilirubinemia. Integrating the panel with other tests for assessing the likelihood of bilirubin neurotoxicity, such as end-tidal carbon monoxide,39,41 automated auditory brainstem response MRI,<sup>70</sup> and G6PD screening,71,72 will provide even more clinical guidance, promising to reduce the cost of jaundice management and the incidence of bilirubin neurotoxicity by greatly improving our ability to identify those jaundiced newborns truly needing treatment.47,73

In summary, neonatal hyperbilirubinemia is a normal occurrence that on rare occasions causes bilirubin neurotoxicity.

The emerging tests that can make the bilirubin binding panel a clinical reality shift the clinical focus from the magnitude of B<sub>Total</sub> (hyperbilirubinemia) to the magnitude of the extravascular bilirubin accumulation and the risk of bilirubin neurotoxicity at any B<sub>Total</sub>. The underlying principle governing clinical use of bilirubin binding is that the extravascular (brain) bilirubin level and the corresponding risk of bilirubin neurotoxicity at any B<sub>Total</sub> increase as the K<sub>D</sub>/BBC ratio increases. Prospective determination of population bilirubin binding parameters, not prospective studies comparing the relative abilities of bilirubin binding components to predict bilirubin neurotoxicity, are required to use the bilirubin binding panel clinically. The panel improves and individualizes the current laboratory tools used to guide the clinical management of neonatal hyperbilirubinemia by further delineating the risk of bilirubin neurotoxicity at any B<sub>Total</sub>.

#### **APPENDIX**

### Bilirubin Binding and the Hour-Specific B<sub>Total</sub>

Consider an accumulated bilirubin of 8 mg/dL at 24 hours of age in a newborn with a B<sub>Total</sub> of 1 mg/dL at birth. If the 24-hour specific  $B_{Total}$  is 5 mg/dL (Fig 2), 4 mg/dL of bilirubin has left the vascular space and  $k_e \cdot \Delta B_{Free} = 4 \text{ mg/dL}$  (Equation 2). At the median  $K_D$  (0.644 µg/dL) and BBC (33.6 mg/dL) from Table 2, B<sub>Free</sub> calculated from Equation 1 increases from 0.02  $\mu$ g/dL at birth to 0.12  $\mu$ g/dL at 24 hr, and  $\Delta B_{Free}$  = 0.10 µg/dL and  $k_e = 40 \text{ mg/}\mu\text{g}$  (Equation 2). However at the 75th and 25th percentiles of K<sub>D</sub> (0.913 µg/dL) and BBC (30.9 mg/dL), respectively,  $\Delta B_{Free} = 0.14 \ \mu g/dL$  and  $k_e \cdot \Delta B_{Free} = 40 \times 0.15 = 6 \text{ mg/dL},$ requiring a 25% higher accumulated bilirubin of 10 mg/dL to achieve the 24-hour B<sub>Total</sub> of 5 mg/dL. Similarly, at the 25th and 75th

percentiles of  $K_D$  (0.486 µg/dL) and BBC (36.2 mg/dL), respectively,  $\Delta B_{Free} = 0.064\mu g/dL$  and  $k_e \cdot \Delta B_{Free} =$ 40 × 0.065 = 2.6 mg/dL, requiring a 17.5% lower accumulated bilirubin of 6.6 mg/dL to achieve the 24-hr  $B_{Total}$  of 5 mg/dL. In general the accumulated bilirubin needed to achieve any hr-specific  $B_{Total}$ increases as the  $K_D/BBC$  ratio increases as indicated by the dashed lines in Figure 2.

#### Bilirubin Binding and Guideline Intervention B<sub>Total</sub>, Term Newborns

A  $B_{Total} \ge 30 \text{ mg/dL}$  is considered "hazardous" in the term newborn population,  $^{25-27}$  and  $B_{Free}$  calculated using Equation 1 at the  $B_{Total}$  of 30 mg/dL and the median population  $K_{\rm D}$ and BBC from Table 2 is  $5.37 \,\mu g/dL$ . Because the volume of distribution for bilirubin varies with birth weight,74  $B_{Free}$  is about 1.5 µg/dL per kg at the average term newborn birth weight of 3.5 kg (5.37  $\mu$ g/dL ÷ 3.5 kg). Measuring the bilirubin binding panel makes it possible to calculate the B<sub>Total</sub> at which the "standard" risk  $B_{Free}$  of 1.5 µg/dL per kg will occur using the following rearrangement of Equation 1:

"Standard" Risk B<sub>Total</sub>  
= 
$$\frac{BBC(1.5 \cdot weight, kg)}{K_{p} + (1.5 \cdot weight, kg)}$$

For example, an otherwise well 3-kg term newborn with a  $B_{Total}$  of 20 mg/dL, a  $K_D$  of 0.91 µg/dL, and a BBC of 24 mg/dL would have a  $B_{Free}$  of 1.5 µg/dL per kg and all else being equal would be at about the same inherent risk of bilirubin neurotoxicity as a 3.5 kg newborn with a  $B_{Total}$  of 30 mg/dL and the median  $K_D$  and BBC.<sup>14,17</sup>

#### Bilirubin Binding and Guideline Intervention B<sub>Total</sub>, Premature Newborns:

In premature newborns, exchange transfusion has been recommended at  $B_{Total}$  anywhere from 10 to 14 mg/dL.<sup>15,45</sup>  $B_{Free}$  calculated using Equation 1 at these  $B_{Total}$  and the median  $K_{D}$  and BBC from Table 3

ranges from 0.74 to 1.43  $\mu$ g/dL, respectively (Equation 1). An individualized "standard" risk B<sub>Total</sub> for this group could be established in the manner described for term newborns, for example, the B<sub>Total</sub> at which the B<sub>Free</sub> reaches 1.0  $\mu$ g/dL per kg.<sup>45,46</sup>

#### **ABBREVIATIONS**

- Alb<sub>Total</sub>: plasma concentration of albumin
- BBC: plasma bilirubin binding capacity
- B<sub>Free</sub>: non–albumin bound (free) bilirubin concentration
- B<sub>Total</sub>: plasma total bilirubin concentration
- K<sub>a</sub>: Henderson-Hasselbalch acid-base equilibrium dissociation constant
- k<sub>e</sub>: rate constant for free bilirubin leaving the blood
- K<sub>D</sub>: bilirubin-albumin equilibrium dissociation constant
- *n*: number of bilirubin binding sites per albumin molecule

#### REFERENCES

- Andersen DH, Blanc WA, Crozier DN, Silverman WA. A difference in mortality rate and incidence of kernicterus among premature infants allotted to two prophylactic antibacterial regimens. *Pediatrics*. 1956;18(4):614–625
- Harris RC, Lucey JF, MacLean JR. Kernicterus in premature infants associated with low concentrations of bilirubin in the plasma. *Pediatrics*. 1958;21(6):875–884
- Odell GB. Studies in kernicterus. I. The protein binding of bilirubin. *J Clin Invest.* 1959;38(5):823–833
- Huber AH, Zhu B, Kwan T, Kampf JP, Hegyi T, Kleinfeld AM. Fluorescence sensor for the quantification of unbound bilirubin concentrations. *Clin Chem.* 2012;58(5):869–876

- Lamola AA, Eisinger J, Blumberg WE, Patel SC, Flores J. Flurorometric study of the partition of bilirubin among blood components: basis for rapid microassays of bilirubin and bilirubin binding capacity in whole blood. *Anal Biochem.* 1979;100(1):25–42
- Lamola AA, Bhutani VK, Du L, et al. Neonatal bilirubin binding capacity discerns risk of neurological dysfunction. *Pediatr Res.* 2015;77(2):334–339
- Ahlfors CE, Wennberg RP, Ostrow JD, Tiribelli C. Unbound (free) bilirubin: improving the paradigm for evaluating neonatal jaundice. *Clin Chem.* 2009;55(7):1288–1299
- Sheridan SE. Parents of infants and children with kernicterus. *J Perinatol.* 2005;25(4):227–228
- Holtzman NA. Management of hyperbilirubinemia: quality of evidence and cost. *Pediatrics*. 2004;114(4):1086–1088
- Xie B, da Silva O, Zaric G. Costeffectiveness analysis of a systembased approach for managing neonatal jaundice and preventing kernicterus in Ontario. *Paediatr Child Health.* 2012;17(1):11–16
- Gitzelmann-Cumarasamy N, Kuenzle CC. Bilirubin binding tests: living up to expectations? *Pediatrics*. 1979;64(3):375–378
- 12. Levine RL. Bilirubin: worked out years ago? *Pediatrics*. 1979;64(3):380-385
- Ritter DA, Kenny JD, Norton HJ, Rudolph AJ. A prospective study of free bilirubin and other risk factors in the development of kernicterus in premature infants. *Pediatrics*. 1982;69(3):260–266
- American Academy of Pediatrics Subcommittee on Hyperbilirubinemia. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. *Pediatrics*. 2004;114(1):297–316
- Maisels MJ, Watchko JF, Bhutani VK, Stevenson DK. An approach to the management of hyperbilirubinemia in the preterm infant less than 35 weeks of gestation. *J Perinatol.* 2012;32(9):660–664
- 16. Jacobsen J. Binding of bilirubin to human serum albumin - determination

of the dissociation constants. *FEBS Lett.* 1969;5(2):112–114

- Ahlfors CE, Parker AE. Bilirubin binding contributes to the increase in total bilirubin concentration in newborns with jaundice. *Pediatrics*. 2010;126(3):e639–e643
- Hertz H. Available bilirubin binding sites of serum from newborns determined by a direct spectrometric method using bromphenol blue. Scand J Clin Lab Invest. 1975;35(6):561–568
- Iskander I, Gamaleldin R, El Houchi S, et al. Serum bilirubin and bilirubin/ albumin ratio as predictors of bilirubin encephalopathy. *Pediatrics*. 2014;134(5):e1330–e1339
- Hulzebos CV, Dijk PH, van Imhoff DE, et al; BARTrial Study Group. The bilirubin albumin ratio in the management of hyperbilirubinemia in preterm infants to improve neurodevelopmental outcome: a randomized controlled trial--BARTrial. *PLoS One.* 2014;9(6):e99466
- Hulzebos CV, Dijk PH. Bilirubinalbumin binding, bilirubin/albumin ratios, and free bilirubin levels: where do we stand? *Semin Perinatol.* 2014;38(7):412–421
- 22. McDonagh AF, Maisels MJ. Bilirubin unbound: déjà vu all over again? *Pediatrics*. 2006;117(2):523–525
- McDonagh AF, Vreman HJ, Wong RJ, Stevenson DK. Photoisomers: obfuscating factors in clinical peroxidase measurements of unbound bilirubin? *Pediatrics*. 2009;123(1):67–76
- 24. Hansen TWR. Acute management of extreme neonatal jaundice—the potential benefits of intensified phototherapy and interruption of enterohepatic bilirubin circulation. *Acta Paediatr.* 1997;86(8):843–846
- 25. Kuzniewicz MW, Wickremasinghe AC, Wu YW, et al. Incidence, etiology, and outcomes of hazardous hyperbilirubinemia in newborns. *Pediatrics*. 2014;134(3):504–509
- Wickremasinghe AC, Risley RJ, Kuzniewicz MW, et al. Risk of sensorineural hearing loss and bilirubin exchange transfusion thresholds. *Pediatrics*. 2015;136(3):505–512

- Wu YW, Kuzniewicz MW, Wickremasinghe AC, et al. Risk for cerebral palsy in infants with total serum bilirubin levels at or above the exchange transfusion threshold: a population-based study. *JAMA Pediatr.* 2015;169(3):239–246
- Klotz IM, Hunston DL. Protein affinities for small molecules: conceptions and misconceptions. *Arch Biochem Biophys.* 1979;193(2):314–328
- Hsia DY, Allen FH Jr, Gellis SS, Diamond LK. Erythroblastosis fetalis.
   VIII. Studies of serum bilirubin in relation to Kernicterus. *N Engl J Med.* 1952;247(18):668–671
- 30. Ip S, Chung M, Kulig J, et al; American Academy of Pediatrics Subcommittee on Hyperbilirubinemia. An evidence-based review of important issues concerning neonatal hyperbilirubinemia. *Pediatrics*. 2004;114(1). Available at: www. pediatrics.org/cgi/content/full/114/1/ e130
- 31. Ip S, Lau J, Chung M, et al. Hyperbilirubinemia and kernicterus:
  50 years later. *Pediatrics*.
  2004;114(1):263–264
- Sunderman FW Jr. Current concepts of "normal values," "reference values," and "discrimination values, " in clinical chemistry. *Clin Chem.* 1975;21(13):1873–1877
- Lott JA, Mitchell LC, Moeschberger ML, Sutherland DE. Estimation of reference ranges: how many subjects are needed? *Clin Chem.* 1992;38(5):648–650
- Shimabuku R, Nakamura H. Total and unbound bilirubin determination using an automated peroxidase micromethod. *Kobe J Med Sci.* 1982;28(2):91–104
- Maisels MJ, Pathak A, Nelson NM, Nathan DG, Smith CA. Endogenous production of carbon monoxide in normal and erythroblastotic newborn infants. *J Clin Invest.* 1971;50(1):1–8
- Stevenson DK, Fanaroff AA, Maisels MJ, et al. Prediction of hyperbilirubinemia in near-term and term infants. *Pediatrics*. 2001;108(1):31–39
- Diamond I, Schmid R. Experimental bilirubin encephalopathy. The mode of entry of bilirubin-14C into the

central nervous system. *J Clin Invest.* 1966;45(5):678–689

- Bhutani VK, Johnson L, Sivieri EM. Predictive ability of a predischarge hour-specific serum bilirubin for subsequent significant hyperbilirubinemia in healthy term and near-term newborns. *Pediatrics*. 1999;103(1):6–14
- Bhutani VK, Wong RJ, Vreman HJ, Stevenson DK; Jaundice Multinational Study Group. Bilirubin production and hour-specific bilirubin levels. *J Perinatol.* 2015;35(9):735–738
- 40. Crosse VM, Meyer TC, Gerrard JW. Kernicterus and prematurity. *Arch Dis Child.* 1955;30(154):501–508
- Fischer AF, Ochikubo CG, Vreman HJ, Stevenson DK. Carbon monoxide production in ventilated premature infants weighing less than 1500 g. Arch Dis Child. 1987;62(10):1070–1072
- 42. Tyson JE, Pedroza C, Langer J, et al; Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Does aggressive phototherapy increase mortality while decreasing profound impairment among the smallest and sickest newborns? J Perinatol. 2012;32(9):677–684
- Bender GJ, Cashore WJ, Oh W. Ontogeny of bilirubin-binding capacity and the effect of clinical status in premature infants born at less than 1300 grams. *Pediatrics*. 2007;120(5):1067–1073
- Pearlman MA, Gartner LM, Lee K, Morecki R, Horoupian DS. Absence of kernicterus in low-birth weight infants from 1971 through 1976: comparison with findings in 1966 and 1967. *Pediatrics*. 1978;62(4):460–464
- Nakamura H, Yonetani M, Uetani Y, Funato M, Lee Y. Determination of serum unbound bilirubin for prediction of kernicterus in low birthweight infants. *Acta Paediatr Jpn.* 1992;34(6):642–647
- Ahlfors CE. Unbound bilirubin associated with kernicterus: a historical approach. J Pediatr. 2000;137(4):540–544
- Amin SB, Smith T, Wang H. Is neonatal jaundice associated with Autism Spectrum Disorders: a systematic

review. *J Autism Dev Disord*. 2011;41(11):1455–1463

- Waters WJ, Porter E. Indications for exchange transfusion based upon the role of albumin in the treatment of hemolytic disease of the newborn. *Pediatrics.* 1964;33:749–757
- Lucey JF, Valaes T, Doxiadis SA. Serum albumin reserve PSP dye binding capacity in infants with kernicterus. *Pediatrics*. 1967;39(6):876–883
- Jirsová V, Jirsa M, Heringová A, Koldovský O, Weirichová J. The use and possible diagnostic significance of sephadex gel filtration of serum from icteric newborn. *Biol Neonat*. 1967;11(3):204–208
- Odell GB, Cohen SN, Kelly PC. Studies in kernicterus. II. The determination of the saturation of serum albumin with bilirubin. *J Pediatr*. 1969;74(2):214–230
- Bratlid D. Reserve albumin binding capacity, salicylate saturation index, and red cell binding of bilirubin in neonatal jaundice. *Arch Dis Child.* 1973;48(5):393–397
- Jacobsen J, Wennberg RP. Determination of unbound bilirubin in the serum of newborns. *Clin Chem.* 1974;20(7):783–789
- 54. Lee K, Gartner LM, Zarafu I. Fluorescent dye method for determination of the bilirubin-binding capacity of serum albumin. *J Pediatr.* 1975;86(2):280–285
- Griffiths WC, Diamond I, Dextraze P. The albumin binding of unconjugated bilirubin in serum. *Clin Biochem*. 1975;8(4):254–260
- Levine RL. Fluorescencequenching studies of the binding of bilirubin to albumin. *Clin Chem.* 1977;23(12):2292–2301
- 57. Cashore WJ, Oh W. Unbound bilirubin and kernicterus in low-birth-weight infants. *Pediatrics*. 1982;69(4):481–485
- Ahlfors CE. Benzyl alcohol, kernicterus, and unbound bilirubin. J Pediatr. 2001;139(2):317–319

- Funato M, Tamai H, Shimada S, Nakamura H. Vigintiphobia, unbound bilirubin, and auditory brainstem responses. *Pediatrics*. 1994;93(1):50–53
- 60. Amin SB, Ahlfors C, Orlando MS, Dalzell LE, Merle KS, Guillet R. Bilirubin and serial auditory brainstem responses in premature infants. *Pediatrics*. 2001;107(4):664–670
- 61. Ahlfors CE, Parker AE. Unbound bilirubin concentration is associated with abnormal automated auditory brainstem response for jaundiced newborns. *Pediatrics*. 2008;121(5):976–978
- 62. Ahlfors CE, Amin SB, Parker AE. Unbound bilirubin predicts abnormal automated auditory brainstem response in a diverse newborn population. *J Perinatol.* 2009;29(4):305–309
- 63. Roca L, Calligaris S, Wennberg RP, et al. Factors affecting the binding of bilirubin to serum albumins: validation and application of the peroxidase method. *Pediatr Res.* 2006;60(6):724–728
- 64. Ahlfors CE, Vreman HJ, Wong RJ, et al; Phototherapy Subcommittee; National Institute of Child Health and Development (NICHD) Neonatal Research Network. Effects of sample dilution, peroxidase concentration, and chloride ion on the measurement of unbound bilirubin in premature newborns. *Clin Biochem*. 2007;40(3-4):261–267
- 65. Oh W, Stevenson DK, Tyson JE, et al; NICHD Neonatal Research Network Bethesda MD. Influence of clinical status on the association between plasma total and unbound bilirubin and death or adverse neurodevelopmental outcomes in extremely low birth weight infants. *Acta Paediatr.* 2010;99(5):673–678
- 66. Morioka I, Nakamura H, Koda T, et al. Serum unbound bilirubin as a

predictor for clinical kernicterus in extremely low birth weight infants at a late age in the neonatal intensive care unit. *Brain Dev.* 2015;37(8):753–757

- 67. Morioka I, Nakamura H, Koda T, et al. Serum unbound bilirubin as a predictor for clinical kernicterus in extremely low birth weight infants at a late age in the neonatal intensive care unit. *Brain Dev.* 2015;37(8):753–757
- 68. Amin SB, Wang H, Laroia N, Orlando M. Unbound bilirubin and auditory neuropathy spectrum in late preterm and term newborns with severe jaundice. J Pediatr. 2016;173:84–89
- 69. Hegyi T, Kathiravan S, Stahl GE, Huber AH, Kleinfeld A. Unbound free fatty acids from preterm infants treated with intralipid decouples unbound from total bilirubin potentially making phototherapy ineffective. *Neonatology*. 2013;104(3):184–187
- 70. Worley G, Erwin CW, Goldstein RF, Provenzale JM, Ware RE. Delayed development of sensorineural hearing loss after neonatal hyperbilirubinemia: a case report with brain magnetic resonance imaging. *Dev Med Child Neurol.* 1996;38(3):271–277
- 71. Ahlfors CE, Herbsman O. Unbound bilirubin in a term newborn with kernicterus. *Pediatrics*. 2003;111(5 pt 1):1110–1112
- Christensen RD, Yaish HM, Wiedmeier SE, et al. Neonatal death suspected to be from sepsis was found to be kernicterus with G6PD deficiency. *Pediatrics*. 2013;132(6):e1694–e1698
- Amin SB, Wang H. Unbound unconjugated hyperbilirubinemia is associated with central apnea in premature infants. *J Pediatr*. 2015;166(3):571–575
- 74. Tayman C, Rayyan M, Allegaert K. Neonatal pharmacology: extensive interindividual variability despite limited size. J Pediatr Pharmacol Ther. 2011;16(3):170–184

# The Bilirubin Binding Panel: A Henderson-Hasselbalch Approach to Neonatal Hyperbilirubinemia Charles E. Ahlfors *Pediatrics* 2016;138; DOI: 10.1542/peds.2015-4378 originally published online September 8, 2016;

**Updated Information &** including high resolution figures, can be found at: Services http://pediatrics.aappublications.org/content/138/4/e20154378 This article cites 74 articles, 36 of which you can access for free at: References http://pediatrics.aappublications.org/content/138/4/e20154378#BIBL **Subspecialty Collections** This article, along with others on similar topics, appears in the following collection(s): **Fetus/Newborn Infant** http://www.aappublications.org/cgi/collection/fetus:newborn\_infant\_ sub Hyperbilirubinemia http://www.aappublications.org/cgi/collection/hyperbilirubinemia\_su h Neonatology http://www.aappublications.org/cgi/collection/neonatology\_sub **Permissions & Licensing** Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.aappublications.org/site/misc/Permissions.xhtml **Reprints** Information about ordering reprints can be found online: http://www.aappublications.org/site/misc/reprints.xhtml



# PEDIATRRES®

# The Bilirubin Binding Panel: A Henderson-Hasselbalch Approach to Neonatal Hyperbilirubinemia

Charles E. Ahlfors *Pediatrics* 2016;138; DOI: 10.1542/peds.2015-4378 originally published online September 8, 2016;

The online version of this article, along with updated information and services, is located on the World Wide Web at: http://pediatrics.aappublications.org/content/138/4/e20154378

Pediatrics is the official journal of the American Academy of Pediatrics. A monthly publication, it has been published continuously since 1948. Pediatrics is owned, published, and trademarked by the American Academy of Pediatrics, 141 Northwest Point Boulevard, Elk Grove Village, Illinois, 60007. Copyright © 2016 by the American Academy of Pediatrics. All rights reserved. Print ISSN: 1073-0397.

